Análise espectral da temperatura da superfície do mar global no período de 1884 a 2014

Autores

  • Carlos Batista Silva Universidade de São Paulo
  • Maria Elisa Siqueira Silva Departamento de Geografia - USP

Palavras-chave:

ondeletas, variância, tendência de TSM

Resumo

O presente trabalho tem por objetivo verificar a evolução temporal da variância global da temperatura da superfície do mar, TSM, obtida pela aplicação da transformada de ondeletas aos dados mensais, e de sua tendência linear para o período de 1884 a 2014. A aplicação da técnica de ondeletas usando dados médios de TSM para várias áreas oceânicas permitiu a identificação de quatro faixas espectrais mais importantes: 1-12 meses, 1-2 anos, 2-4 anos 4-8 anos e 8-12 anos. Com a análise de tendência linear aplicada à variância da TSM em cada faixa espectral foi possível verificar que as oscilações mais rápidas, 1-12 meses, 1-2 anos e 2-4 anos, apresentam tendência linear negativa para o sinal global, enquanto as faixas caracterizadas por oscilações mais lentas, 4-8 anos e 8-12 anos, apresentam tendência positiva ao longo da série temporal. Estes resultados levam à sugestão de que fenômenos oceânicos caracterizados por oscilações mais rápidas estejam, ao longo do período considerado, transferindo energia para fenômenos oceânicos com oscilações mais lentas.

 

Referências

AN, S. I; JIN, F. F. Nonlinearity and Asymmetry of ENSO. Journal of Climate, 17(12), 2399-2412, 2004.

AN, S. I; WANG, B. Interdecadal Change of the Structure of the ENSO Mode and Its Impact on the ENSO Frequency. Journal of Climate,13(12), 2044-2055, 2000.

ANDREOLI, Rita Valéria; KAYANO, Mary Toshie. Multi‐scale variability of the sea surface temperature in the Tropical Atlantic. Journal of Geophysical Research: Oceans, v. 109, n. C5, 2004.

BAKER, J. W. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America,97(5), 1486-1501, 2007.

BÖTTINGER, JH; MIKOLAJEWICZ, M.U; SCHEUERMANN, G. Visual exploration of climate variability changes using wavelet analysis.Visualization and Computer Graphics, IEEE Transactions on, 15(6), 1375-1382. 2009.

De MOORTEL I., HOOD, A. W., IRELAND, J. Coronal seismology through wavelet analysis. Astronomy & Astrophysics, 381(1), 311-323, 2002.

FARGE, M., Wavelet transforms and their applications to turbulence. Journal of the Atmospheric Sciences, Palo Alto, v.24, p.395-457, 1992.

GU, D.; PHILANDER, S. Secular changes of annual and interannual variability in the Tropics during the past century, Journal of Climate, 8, 864- 876, 1995.

JIN, Fei‐Fei et al. Strong El Nino events and nonlinear dynamical heating.Geophysical research letters, v. 30, n. 3, 2003.

KAYANO, Mary Toshie; ANDREOLI, Rita Valéria. Decadal variability of northern northeast Brazil rainfall and its relation to tropical sea surface temperature and global sea level pressure anomalies. Journal of Geophysical Research: Oceans, v. 109, n. C11, 2004.

KANG, S.; LIN, H. Wavelet analysis of hydrological and water quality signals in an agricultural watershed. Journal of Hydrology, 338(1), 1-14, 2007.

KESTIN, T. S., KAROLY, D. J., YANO, J. I.; RAYNER, N. A. Time-frequency variability of ENSO and stochastic simulations. Journal of Climate,11(9), 2258-2272, 1998.

KUMAR, P. Wavelets analysis for geophysical applications.Reviews of Geophysics, v. 35, n. 4, p. 385 – 412, 1997.

LAU, K. M.; WENG, H. Climate signal detection using wavelet transform: How to make a time series sing. Bulletin of the American Meteorological Society, 76(12), 2391-2402, 1995.

LABAT, D., RONCHAIL, J., CALLEDE, J., GUYOT, J. L., DE OLIVEIRA, E; GUIMARÃES, W. (2004). Wavelet analysis of Amazon hydrological regime variability. Geophysical Research Letters, 31(2), 2004.

MAK, M. Orthogonal wavelet analysis: Interannual variability in the sea surface temperature. Bulletin of the American Meteorological Society,76(11), 2179-2186, 1995.

MINOBE, S., MANABE, T.; SHOUJI, A.Maximal wavelet filter and its application to bidecadal oscillation over the Northern Hemisphere through the twentieth century. Journal of climate, 15(9), 1064-1075, 2002.

MORLET, Jean. Sampling theory and wave propagation. In: Issues in Acoustic Signal—Image Processing and Recognition. Springer Berlin Heidelberg, 1983. p. 233-261.

MORETIN, P.A. Ondas e Ondaletas: da análise de Fourier à análise de ondaletas de séries temporais. Edusp, 2014. p.305.

NEWMAN, M., COMPO, G. P.; ALEXANDER, M. A. ENSO-forced variability of the Pacific decadal oscillation. Journal of Climate, 16(23), 3853-3857, 2003.

OKUMURA, Yuko M. et al. A proposed mechanism for the asymmetric duration of El Niño and La Niña. Journal of climate, v. 24, n. 15, p. 3822-3829, 2011.

RASMUSSON, Eugene M.; CARPENTER, Thomas H. The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Monthly Weather Review, v. 111, n. 3, p. 517-528, 1983.

ROPELEWSKI, Chester F.; HALPERT, Michael S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly weather review, v. 115, n. 8, p. 1606-1626, 1987.

ROPELEWSKI, C. F.; HALPERT, M. S. Precipitation patterns associated with the high index phase of the Southern Oscillation. Journal of climate, v. 2, n. 3, p. 268-284, 1989.

SETOH, T., IMAWAKI, S., OSTROVSKII, A.; UMATANI, S. I. Interdecadal variations of ENSO signals and annual cycles revealed by wavelet analysis. Journal of Oceanography, 55(3), 385-394, 1999.

TIMMERMANN, A., OBERHUBER, J., BACHER, A., ESCH, M., LATIF, M.; ROECKNER, E. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398(6729), 694-697, 1999.

TORRENCE, C.; COMPO, G.P. A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61-78, 1998

TORRENCE, C.; WEBSTER, P. J..Interdecadal changes in the ENSO-monsoon system. Journal of Climate, 12(8), 2679-2690, 1999.

VITORINO, M. I., DA SILVA DIAS, P. L.; FERREIRA, N. J. Observational study of the seasonality of the submonthly and intraseasonal signal over the tropics. Meteorology and Atmospheric Physics, 93(1-2), 17-35, 2006.

WANG, Chunzai; PICAUT, Joël. Understanding ENSO physics—A review.Earth's Climate, p. 21-48, 2004.

WENG, Hengyi; LAU, K. M. Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific. Journal of the atmospheric sciences, v. 51, n. 17, p. 2523-2541, 1994.

WHITCHER, Brandon; GUTTORP, Peter; PERCIVAL, Donald B. Wavelet analysis of covariance with application to atmospheric time series. Journal of Geophysical Research, v. 105, n. D11, p. 941-962, 2000.

Downloads

Publicado

2017-01-06

Como Citar

Silva, C. B., & Silva, M. E. S. (2017). Análise espectral da temperatura da superfície do mar global no período de 1884 a 2014. Boletim Paulista De Geografia, (95), 79–97. Recuperado de https://publicacoes.agb.org.br/boletim-paulista/article/view/659

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)